EFFECT OF FLOW VELOCITY ON CURRENT
DISTRIBUTION IN MGD CHANNEL

A, G. Korsun and A. L. Levin

We study stationary-plane flow of a conducting gas across a magnetic field in a channel of constant
section formed by electrodes of finite length and insulators. The Hall effect is accounted for. We assume
that the electromagnetic forces are small and the linear approximation is used. Tt is shown that disturb-
ances of the compressible gas-flow velocity can lead to the formation of closed currents in the channel
and alter significantly the current density distribution on the electrodes. For sufficiently large values of
the gas velocity and conductivity, i.e., for magnetic Reynolds numbers which are not small, the current is
concentrated near the exit from the interelectrode space.

The problem of parameter distribution in a MGD channel with account for the electromagnetic, gas-
dynamic, thermal, and so on processes is very complex. In many cases the primary forces and energy
sources in the flow are determined by the electromagnetic quantities. In this connection it is of interest
to study the electromagnetic processes in the channel with maximal simplification of the gasc‘iynamic and
thermal parts of the problem. The guestion of the current and potential distribution in a channel with
finite electrodes when the conductivity, Hall parameter, and electrode drop are constant, the velocity does
not vary along the axis of the channel, and the magnetic Reynolds number is small,has been examined in
{1, 2]. The distributions of the electromagnetic quantities are determined by the current outflow from the
interelectrode space and the Hall effect. Subsequent studies were made of the effect of electrode drop [3],
ion slip [4], and conducting gas flow through the electrodes [5].

1. We examine stationary-plane flow of a conducting gas in a channel |X|< «, 0 = Y < h formed by
insulators and electrodes of length 2eh (Fig. 1). We assume that the following conditions are satisfied:

1) Gas viscosity and thermal conduction are not significant;

2) the external magnetic field is uniform and directed along the Z axis (Fig. 1), andthere ismocurrent
along this axis, therefore the overall magnetic field is directed along Z and depends on X and V;

3) the plasma is quasineutral, the electrode drops are constant along the length of each electrode;

4) in'the Ohm's law equation the terms proportional to the gradients of the pressure and electron
temperature, and the terms associated with ion slip, are not significant [6].

Under these conditions the flow of a sufficiently dense singly ionized plasma may be described by the
system of equations
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/ 8 temperature T, conductivity o, ionization ratio &, and the linear dimen-
sions are respectively Px, Ux, Bx, Tx, 0%, &x,and the channel width h.
Fig. 1 The scales for the current density j and the electric potential ¢ are
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oxUxB x and ugB xh 4. The similarity criteria in (1.1) are: Mach number M, Alfven number A, Hall parame-
ter H, magnetic Reynolds number R, and specific heat ratio v:
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Here R is the gas constant, 4 the magnetic permeability, e and mj the ion charge and mass.

Excluding j and ¢ from (1.1}, it can be written for plane flow as
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If the changes of all the quantities in the channel are small in comparison with their average values,
i.e., if in dimensionless form
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where € << 1, then Eq. (1.2) can be linearized, Then in the first equation, the induction equation, the non-
linear term with the Hall effect [if the parameter H is not large (H << 1/¢)] and the nonlinear term asso-
ciated with thé conductivity change are small in comparison with the first term. Similarly, in the energy
equation for MzA“"Rm << 1/¢ the term deseribing Joule dissipation is negligible.

After some transformations the system of linearized equations takes the form [7]
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At the walls which are impermeable to the gas,v= 0. The boundary conditions for B are obtained as
follows. The second equation (1.1) permits writing the following relations for the dimensionless overall
currents, referred to unit channel height along z, which flow through the lower (Ij) and upper (I;) electrodes
and along the channel (Ip)

R,I, =B (—a,0) —B(a, 0), Rl =B (—a, 1) —B(a, 1)
R, I =B (z, 1) —B (z, 0)

On ideal insulators the normal component of the current is zero, therefore on them Rpjy = -8B/ 8%,
i.e., B = const. In the following we examine conditions for which the overall current I, along the channel
between the insulating walls is zero, i.e., B (x,1) = B (x,0) for | x|= a, therefore I, = Iy = 1. As the scale
B, for the magnetic field we use its value on the insulators to the left of the electrodes. If the current I in
the external circuit is closed to the right of the electrodes, the By is the inductance of the external field,
while if the current is closed to the left of the electrodes By is the sum of the inductance of the external

field and the self-field of the current I. Thus the boundary conditions for B at the insulaftors have the form
B, 0)=B(z, 1)=1 for z< —a
Bz, ) =Bz, ) =1 —R,I for z>ua (1.4)

The magnitude of the current I can be found in terms of the difference ¢, of the potentials between the
electrodes, where ¢, > 1 corresponds to the accelerator regime, 0 < ¢, < 1 corresponds to the generator
regime, and g; < 0 corresponds to the brake regime.

On ideally conducting electrodes the tangential component of the electric field intensity equals zero
and the boundary condition for the overall magnetic field in the linear approximation is written as
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2. For further simplification of the problem we assume that the effect of the electromagnetic forces
on the flow is small, i.e., in (1.3)

A MPOB | 0z <& dv [ 9y

1t follows from the solutions obtained below that this condition is satisfied for AZRm << 1. In this
case the last four equations in (1.3) describe in the linear approximation compressible gas flow in the ab-
sence of electromagnetic forces. In the induction equation the first term on the right accounts for the in-
fluence of the varying compressible gas flow velocity on the distribution of the electromagnetic quantities.
In an incompressible gas, i.e., for M2 << 1, this term is negligibly small.

In supersonic flow the particular solutions of the gasdynamic equations of (1.3) have the form

v =vysin (ray)sin [k, (x — zy)], k, = —7‘?{_—1 (r=0,1,2,..)
u=u(xy,y) — VM:— - cos (ray) {cos [kr(z — z,)] — 1} 2.1)
UQM?‘

p=14

cos (rny)cos [£, (z — x4)]

Vir—i
Here vy and x4 are constants of integration.

This solution describes supersonic-adiabatic flow of an inviscid gas in a flat channel of constant sec-
tion with small transverse displacements, which lead to periodic variations of the flow parameters along x
with the period

L=2r1y M2 —1

Disturbances of this type can arise if the flow at the channel entrance is nonuniform across the sec-
tion under the action of transverse components of the electromagnetic forces associated with the currents
flowing out of the interelectrode space [8].

3. To solve the induction equation we used the approximate method suggested for similar problems
by Kalikhman, which is a version of the method of integral relations, The dependence of the overall B on
the y coordinate was represented in the form of a fourth degree polynomial with coefficients which are
functions of x

B = By + By +Byy* + By + (B, — B, — By — By — B,) y* (3.1)

Here B, and By are the values of the induction at the channel walls for y = 0 and y = 1, respectively.
The following five relations were used to find these five coefficients: the boundary conditions (1.4) or (1.5)
at the two walls, the equation itself for y = 0 and y = 1, and the integral relation obtained by integrating the
induction equation over y from 0 to 1 with the use of (3.1).

Thus, the solution of the partial differerntial equation with nonhomogeneous boundary conditions re-
duces to the solution of systems of ordinary differential equations for three regions: for the interelectrode
space (|x| = a) and the two channel segments with insulating walls (x| = a). The constants of integration

are determined by the finiteness of the |x]| - and the conditions for joining of the solutions at the bounda-
ries of the regions,

Here we use the continuity at the boundary of the tangential component of the electric field intensity
and the normal component of the current density. In the approximate solutior the joining conditions reduce
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g to continuity of the difference of the potentials on the channel walls and the con-
tinuity of B at the walls and at the centerline of the channel. The value of T was
< < W a found in terms of the potential difference ¢, with the aid of the relation ob-
. tained from the linearized Ohm's law equation
A i 9B ¢ {
= b o au= Rm[gde+§<u-—1)dy—<po]—H(Bl—Bo>
|
o The problem was solved in [1, 2, 4] by different methods for A% << 1,
| Ry << 1, vy = 0. The solution obtained using the technique described above
‘ agrees approximately with these solutions. The coefficient characterizing the
overall current increase owing to current outflow from the interelectrode space
4 / for H<< 1, Ry, << 1, v, = 0 equals 1/(¢y—1) = 2a + 0.53 rather than 1/(@y—1) =
/ 2a + 0.44 from the exact solution [1]. Figure 2 shows the electric current lines
U Z (i.e., the lines B = const) in a channel with finite electrodes for @ = 1, A> << 1,
. / ; ‘ Ry, <<1, vy =0, H<< 1 (Fig. 2a) and H = 1 (Fig. 2b).
Figure 2¢ shows the current density distribution on the electrodes for
Z -7 g 7 z H << 1 (curve 1) and for H =1 (curve 2), The solid curves were obtained from
Fig. 6 the approximate solution and the dashed curves from [4]. The current density

increases toward the end of the electrode, but not to infinity as in the exact
solution, rather to a finite value.

4. In a channel with nonconducting walls disturbances of the type (2.1) lead to the formation of cur-
rent loops. The corresponding solution of the induction equation for R, << 1 has the form

B =14 Vysinlh(z— o)l {1/ 1 — 25,58+ 2(8,— 1)y*] —

B2 (/o —1/45) +5(S,— 1)
gt G2 ), w104 R,

R_M?
—flz—_tj—%, sp=72]g for r=1, sp=1 for r=2
The electric current lines (solid) and the gas streamlines (dashed) for M? = 5, Ry << 1, vy =0.1are

shown in Fig. 3a for r=1 and in Fig. 3b for r =2,

V, =

If a conducting gas stream travels with supersonic velocity in a channel with electrodes and if there
are in the channel disturbances of the type (2.1), then current loops analogous to those shown in Fig. 3 are
superimposed on the field of the currents flowing between the electrodes (Fig. 2). In the electrode region
these loops close on the electrodes and alter the current-density distribution on the electrodes. The solu-
tion obtained on the induction equation for arbitrary H, Ry, v, is very complex.

Figure 4a shows the electric current lines in a channel with electrodes for M? = 5, Ry, << 1, vo/ (0=
1),r=2,a=1,x,= -1, H<< 1. Figure 4b shows the distribution of the current density j,, at the electrodes
(curve 1) and at the channel centerline (curve 2). For the same values of the parameters %ut with H=1
the analogous distributions are shown in Fig. 5a, b (curve 1 is the distribution of j, on the lower electrode;
the distribution on the upper electrode is symmetric about the x = 0 axis). We seée from the solution that for

v M2—1 kr2 + 2
Qo—17 T MT 2ak,

(2 = 60 + R,2/4)

disturbances in the gas flow alter significantly the current distribution in the channel and on the electrodes.
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Specifically, on some segments of the electrodes the current density may be very small. For suffi-
ciently large values of the parameter vo/ (¢p—1) the solution shows the possibility of the appearance on the
electrodes of segments with reversed direction of the current, i.e., current loops closing through the elec-
trodes (Fig. 5a). Closure of the current lines on the electrode was discovered in a numerical solution of
the problem of two-dimensional MGD flow in a coaxial system [9].

Flow nonuniformity alters the overall resistance of the interelectrode space. For H << 1, Ry << 1,
and r = 2 the overall current is

5 3 Vrcos (krz) .
I = = (Bo(— ) — Bo (@) = (00— 1) (20 + ) + ooy [5mk, c0s (a) + (k2 + ) sin (k,a)]

7t 3n

5. If Ry, is small, then along with the effects examined above there appears a "deflection" of the
electric current lines by the flow. For example, the solution for uniform flow for v, = 0, H << 1 has the form

Bt =m0l oy i(nt VhR) (@4 )] (y—~20°+40) for < —a

n—1;Ry

B = By(x) + By(x) (y* —2y° + y*) for [z|<e

Bo(z) =1+ (o —1){l —exp[Ry(a+ )]} + 722——{33(— alexp [R,(a+ z)] — B, (a)}

_ 25Rm (@0 —1)
25h (2la) (v2 — 2Ry

By(z) = 5 {{2nch(la +1/,R a) + R, sh(la + YR 0)] exp (— Iz + 2/ R,,2)

— [2nch(la — Yo Rpna) — R, sh(la — Yo R, a)] exp (Iz + Y, R, 2)}

B = Bo(a)-l—sTR""_F(?z—;i) exp[(n—YyRpn)(@a—1z) (y—20°+ 1% for z>a

The electric current lines corresponding to this solution for R, =1 are shown in Fig. 6a and the
current density jy distributions are shown in Fig. 6b (curve 1 is at the electrodes, curve 2 is at the channel
centerline).

For 2aR,, < 0.1 the solution practically coincides with that for Ry, << 1. The current concentration
near the exit from the interelectrode space is associated with increase of

|90 — iub’dy(
0

because of the approximately exponential variation of the overall B.

In conclusion the authors wish to thank V. F. Kalitenko for assistance in carrying out the calculations.
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